Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.

 

Search Results

M. Kozlova, A. Ahola, P. Roy, J.S. Yeomans (2025). "Simple Binning Algorithm and SimDec Visualization for Comprehensive Sensitivity Analysis of Complex Computational Models", Journal of Environmental Informatics Letters, 13, 1, 38-56.

Open Access Download

Abstract Models of complex environmental systems inherently contain interactions and dependencies among their input variables that affect their joint influence on the output. Such models are often computationally expensive and few sensitivity analysis methods can effectively process such complexities. Moreover, the sensitivity analysis field as a whole pays limited attention to the nature of interaction effects, whose understanding can prove to be critical for the design of safe and reliable systems. In this paper, we introduce and extensively test a simple binning approach for computing sensitivity indices and demonstrate how complementing it with the smart visualization method, simulation decomposition (SimDec), can permit important insights into the behaviour of complex models. The straightforward binning computation generates first-, second-order effects, and a combined sensitivity index, and is considerably more computationally efficient than the “industry standard” measure for Sobol’ indices introduced by Saltelli et al. The cases vary from business and engineering to environmental applications. The totality of the sensitivity analysis framework provides an efficient and intuitive way to analyze the behaviour of complex environmental systems containing interactions and dependencies.

with A. Alam, M. Kozlova, L. Leifsson (2023). "The Importance of Intelligent Colouring for Simulation Decomposition in Environmental Analysis", Journal of Environmental Informatics Letters , 10, 2, 63-73.

Open Access Download

Abstract “Real world” risk analysis in environmental contexts frequently requires the need to contrast numerous uncertain factors simultaneously and to communicate difficult-to-capture interactions. Monte Carlo simulation modelling of complex environmental sytems is frequently employed to integrate uncertain inputs and to construct probability distributions of the resulting outputs. Visual analytics and data visualization can then be employed for the processing, analyzing, and communicating of the influence of any multi-variable uncertainties on the system. The simulation decomposition (SimDec) analytical technique has recently been employed in the complex assessments of environmental systems. SimDec has proved to be beneficial in revealing interdependencies in complex models, lowering computational burdens, facilitating decision-maker perceptions, and especially, making analytical components visualizable. It has been demonstrated that many analytical findings would not have been revealed without the coloured visualizations provided by SimDec. However, an ad hoc colouring scheme of the distribution output is neither sufficient nor capable of producing much of the key visualizable information requisite for an effective SimDec analysis. Instead, an approach that has recently been referred to as an intelligent colouring has been proposed. This paper outlines, highlights, and demonstrates the importance of and best-practices in an intelligent colouring scheme needed for an effective SimDec analysis of complex environmental systems.

Kozlova, M. and Yeomans, J.S. (2022). "Monte Carlo Enhancement with Simulation Decomposition: A “Must-Have” for Many Disciplines", INFORMS Transactions on Education, 22(3), 147-159.

Open Access Download

Abstract Monte Carlo (MC) simulation is widely used in many different disciplines in order to analyze problems that involve uncertainty. Simulation decomposition has recently provided a simple, but powerful, advancement to the standard Monte Carlo approach. Its value for better informing decision making has been previously shown in the investment-analysis field. In this paper, we demonstrate that simulation decomposition can enhance problem analysis in a wide array of domains by applying it to three very different disciplines: geology, business, and environmental science. Further extensions to such disciplines as engineering, natural sciences, and social sciences are discussed. We propose that by incorporating simulation decomposition into pedagogical practices, we expect students to significantly advance their problem-understanding and problem-solving skills.