Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.


Search Results

Yeomans, Julian Scott and M. Kozlova (2023). "Extending System Dynamics Modelling Using Simulation Decomposition to Improve the Urban Planning Process", Frontiers in Sustainable Cities, 5, 1129316.

Open Access Download

Abstract Urban planning often involves decision-making under highly uncertain circumstances. System dynamics and multi-agent modeling frameworks are commonly employed to model the social phenomena in this type of urban planning. However, because the outputs from these approaches are regularly characterized as a function of time, the majority of studies in this modeling domain lack appropriate sensitivity analysis. Consequently, important insights into model behavior are frequently overlooked. Monte Carlo simulation has been used to incorporate uncertain features in urban planning with the outputs displayed as probability distributions. Recently simulation decomposition (SimDec) has been used to enhance the visualization of the cause-effect relationships of multi-variable combinations of inputs on the corresponding simulated outputs. SimDec maps each output value of a Monte Carlo simulation on to the multivariable groups of inputs or scenarios from which it originated. By visually projecting the subdivided scenarios onto the overall output, SimDec can reveal previously unidentified influences between the various combinations of inputs on to the outputs. SimDec can be generalized to any Monte Carlo method with insignificant computational overhead and is, therefore, extendable to any simulated urban planning analysis. This study demonstrates the efficacy of adapting SimDec for the sensitivity analysis of urban dynamics modeling on a paradigmatic simplified version of Forrester's Urban Dynamics- URBAN1 model. SimDec reveals complexities in model behavior that are not, and can not be, captured by standard sensitivity analysis methods and highlights, in particular, the intricate joint effect of immigration and outmigration on system development.