Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.

 

Search Results

Irene Henriques, Perry Sadorsky (2023). "Forecasting Rare Earth Stock Prices With Machine Learning", Resources Policy, 86(A), 104248.

View Paper

Abstract Rare earth elements (REEs) are indispensable for producing green technologies and electronics. Demand for REEs in clean energy technologies in 2040 are projected to be three to seven times higher than today and will be critical to the clean technology transition needed to stave off catastrophic climate change. Forecasting rare earth stock prices is critical for making well informed investment decisions concerning this important asset class. Despite the latter, the literature on forecasting rare earth stock prices is scarce. We use machine learning techniques to forecast daily rare earth stock price direction. The analysis reveals that random forests, extremely randomized trees, RNN, and support vector machine have higher prediction accuracy than Lasso or Naïve Bayes. We find that the 10- to 20-day forecasts using random forests, extremely randomized trees, and support vector machine achieve prediction accuracies greater than 85% with some prediction accuracy reaching 90%. Lasso prediction accuracy is higher than Naïve Bayes but never greater than 67%. The MA200, MA50, on balance volume, VIX, and WAD are the most important predictive features of rare earth stock price direction. A switching portfolio that uses trading signals from an Extra Trees model impressively outperforms a buy and hold portfolio. Our results reveal the high prediction accuracy of using machine learning methods in forecasting rare earth stock price direction which should be useful to investors, policy makers and venture capitalists.

Sadorsky, P. (2021). "A Random Forests Approach to Predicting Clean Energy Stock Prices", Journal of Risk and Financial Management, 14(2), 48.

Open Access Download

Bhattacharya, M., Inekwe, N. and Sadosky, P. (2020). "Convergence Of Energy Productivity In Australian States And Territories: Determinants And Forecasts", Energy Economics, 85.

View Paper

Abstract The Australian government has recently launched a National Energy Productivity Plan that calls for a 40% increase in energy productivity (economic output divided by energy use) before 2030. Improving energy productivity would help boost economic competitiveness, reduce energy costs, and reduce carbon dioxide emissions in Australia. Understanding energy productivity dynamics at the state level is essential for the success of this program. This research analyses the convergence path of energy productivity in Australian states and territories. Club convergence analysis applied to data over the period 1990–2015 reveals two converging energy productivity clubs. Initial energy productivity, industry structure, and automobile fuel prices are important determinants of higher energy productivity. Based on Australian state energy productivity forecasts to 2030, New South Wales and Victoria will be the forerunners in maintaining higher energy productivity in 2030. Australia will not achieve a 40% increase in energy productivity before 2030 without significant changes to its fuel mix and industry structure.