Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.

 

Search Results

Fang, X., Hu, P., Li, Z. and Tsai, W. (2013). "Predicting Adoption Probabilities in Social Networks", Information Systems Research, 24(1).

Open Access Download

Abstract In a social network, adoption probability refers to the probability that a social entity will adopt a product, service, or opinion in the foreseeable future. Such probabilities are central to fundamental issues in social network analysis, including the influence maximization problem. In practice, adoption probabilities have significant implications for applications ranging from social network-based target marketing to political campaigns; yet, predicting adoption probabilities has not received sufficient research attention. Building on relevant social network theories, we identify and operationalize key factors that affect adoption decisions: social influence, structural equivalence, entity similarity, and confounding factors. We then develop the locally-weighted expectation-maximization method for Naïve Bayesian learning to predict adoption probabilities on the basis of these factors. The principal challenge addressed in this study is how to predict adoption probabilities in the presence of confounding factors that are generally unobserved. Using data from two large-scale social networks, we demonstrate the effectiveness of the proposed method. The empirical results also suggest that cascade methods primarily using social influence to predict adoption probabilities offer limited predictive power, and that confounding factors are critical to adoption probability predictions.