Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.

 

Search Results

Kozlova, M. and Yeomans, J.S. (2020). "Visual Analytics in Environmental Decision-Making: A Comparison of Overlay Charts Versus Simulation Decomposition", Journal of Environmental Informatics Letters, 4, 2, 93-100.

Open Access Download

Abstract Various components within environmental decision-making problems often contain considerable uncertainty. Monte Carlo simulation approaches have frequently been used to incorporate a wide array of this uncertainty into environmental planning. Simulated outputs summarizing these uncertainties are commonly portrayed in the form of probability distributions. Visualization of the disparate uncertainties within these distributions is a key aspect for effective decision support in Monte Carlo analysis. This study contrasts the performance and benefits of two visual analytics tools – overlay charts and simulation decomposition. Overlay charts enable the display of multiple sources of uncertainty overlaid on top of each other in a single graphical representation and come as a standard feature in numerous commercial Monte Carlo software packages. Conversely, simulation decomposition combines user-defined sub-distributions of the simulation uncertainties and collectively displays them in a combined graphical output figure. This paper contrasts the efficacy of overlay charts versus simulation decomposition for the visual analysis uncertainty into the environmental decision-making process.