Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.

 

Search Results

Yeomans, J.S. (2021). "A Multicriteria, Bat Algorithm Approach for Computing the Range Limited Routing Problem for Electric Trucks", WSEAS Transactions on Circuits and Systems, 20(13), 96-106.

Open Access Download

Abstract As a result of increasing urban intensification, civic planners have devoted additional resources to more sustainability-focused logistics planning. Electric vehicles have proved to be both a lower cost alternative and more environmentally friendly than the more ubiquitous internal combustion engine vehicles. However, the predominant decision-making approaches employed by businesses and municipalities are not necessarily computationally conducive for the optimization and evaluation of urban transportation systems involving electric vehicles. An innovative modelling and planning approach is proposed to enable urban planners to more readily evaluate the contribution of electric vehicles in city logistics and to support the decision-making process. Specifically, this paper provides a multicriteria modelling-to-generate-alternatives (MGA) decision-support procedure that employs the Bat Algorithm (BA) metaheuristic for generating sets of alternatives for electric vehicle planning in urban transshipment problems. The efficacy of this multicriteria, BA-driven MGA approach for creating planning alternatives is demonstrated on an urban transshipment problem involving electric trucks.

Yeomans, J.S. (2020). "A Stochastic Multicriteria Algorithm for Generating Waste Management Facility Expansion Alternatives", Advances in Mathematics, 28, 1-27.

Open Access Download

Abstract While solving waste management (WM) planning problems, it may often be preferable to generate several quantifiably good options that provide multiple, contrasting perspectives. This is because WM planning generally contains complex problems that are riddled with inconsistent performance objectives and contain design requirements that are very difficult to quantify and capture when supporting decision models must be constructed. The generated alternatives should satisfy all of the stated system conditions, but be maximally different from each other in the requisite decision space. The process for creating maximally different sets of solutions is referred to as modelling-to-generate-alternatives (MGA). Simulation-optimization approaches have frequently been used to solve computationally difficult, stochastic WM problems. This paper outlines a stochastic multicriteria MGA approach for WM planning that can generate sets of maximally different alternatives for any simulation-optimization method that employs a population-based solution algorithm. This algorithmic approach is computationally efficient because it simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure. The efficacy of this stochastic MGA method is demonstrated on a “real world” waste management facility expansion case.

Yeomans, J.S. (2019). "A Stochastic, Dual-Criterion, Simulation-Optimization Algorithm for Generating Alternative", Journal of Computer Science Engineering, 5(6), 1-10.

Open Access Download

Abstract Complex stochastic engineering problems are frequently inundated with incompatible performance requirements and inconsistent performance specifications that can be difficult to identify when supporting decision models must be constructed. Consequently, it is often advantageous to create a set of dissimilar options that afford distinctive approaches to the problem. These alternatives should satisfy the required system performance criteria and yet be maximally different from each other in their decision spaces. The approach for creating such maximally different solution sets is referred to as modelling-to-generate-alternatives (MGA). This paper describes a dual-criterion stochastic MGA procedure that can generate sets of maximally different alternatives for any simulation-optimization approach that employs a population-based search algorithm. This stochastic algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure.

Yeomans, J.S. (2019). "A Stochastic Simulation-Optimization Method for Generating Waste Management Alternatives Using Population-Based Algorithms", Applied Science and Innovation Research, 3(3), 92-105.

Open Access Download

Abstract While solving difficult stochastic engineering problems, it is often desirable to generate several quantifiably good options that provide contrasting perspectives. These alternatives should satisfy all of the stated system conditions, but be maximally different from each other in the requisite decision space. The process of creating maximally different solution sets has been referred to as modelling-to-generate-alternatives (MGA). Simulation-optimization has frequently been used to solve computationally difficult, stochastic problems. This paper applies an MGA method that can create sets of maximally different alternatives for any simulation-optimization approach that employs a population-based algorithm. This algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure. The efficacy of this stochastic MGA method is demonstrated on a waste management facility expansion case.

Yeomans, J.S. (2019). "A Stochastic Multicriteria Algorithm for Generating Waste Management Facility Expansion Alternatives", Journal of Civil Engineering, 9(2), 43-50.

Open Access Download

Abstract While solving waste management (WM) planning problems, it may often be preferable to generate several quantifiably good options that provide multiple, contrasting perspectives. This is because WM planning generally contains complex problems that are riddled with inconsistent performance objectives and contain design requirements that are very difficult to quantify and capture when supporting decision models must be constructed. The generated alternatives should satisfy all of the stated system conditions, but be maximally different from each other in the requisite decision space. The process for creating maximally different sets of solutions is referred to as modelling-to-generate-alternatives (MGA). Simulation-optimization approaches have frequently been used to solve computationally difficult, stochastic WM problems. This paper outlines a stochastic multicriteria MGA approach for WM planning that can generate sets of maximally different alternatives for any simulation-optimization method that employs a population-based solution algorithm. This algorithmic approach is computationally efficient because it simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure. The efficacy of this stochastic MGA method is demonstrated on a “real world” waste management facility expansion case.

Yeomans, J.S. (2019). "A Simulation-Optimization Algorithm for Generating Sets of Alternatives Using Population Based Metaheuristic Procedures’, Journal of Software Engineering and Simulation", Journal of Software Engineering and Simulation, 5(2), 1-6.

Open Access Download

Abstract When solving complex stochastic engineering problems, it can prove preferable to create numerous quantifiably good alternatives that provide multiple, disparate perspectives. These alternatives need to satisfy the required system performance criteria and yet be maximally different from each other in the decision space. The approach for creating maximally different sets of solutions is referred to as modelling-togenerate-alternatives (MGA). Simulation-optimization approaches are frequently employed to solve computationally difficult problems containing significant stochastic uncertainties. This paper outlines an MGA algorithm that can generate sets of maximally different alternatives for any simulation-optimization method that employs a population-based procedure. This algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure

Yeomans, J.S. (2019). "A Population-Based Multi-Criteria Algorithm for Alternative Generation", Transactions on Machine Learning and Artificial Intelligence, 7(4), 1-8.

Open Access Download

Abstract Complex problems are frequently overwhelmed by inconsistent performance requirements and incompatible specifications that can be difficult to identify at the time of problem formulation. Consequently, it is often beneficial to construct a set of different options that provide distinct approaches to the problem. These alternatives need to be close-to-optimal with respect to the specified objective(s), but be maximally different from each other in the solution domain. The approach for creating maximally different solution sets is referred to as modelling-to-generate-alternatives (MGA). This paper introduces a computationally efficient, population-based multicriteria MGA algorithm for generating sets of maximally different alternatives.

Yeomans, J.S. (2019). "A Multicriteria Simulation-Optimization Algorithm for Generating Sets of Alternatives Using Population-Based Metaheuristics", WSEAS Transactions on Computers, 18(9), 74-81.

Open Access Download

Abstract Stochastic optimization problems are often overwhelmed with inconsistent performance requirements and incompatible performance specifications that can be difficult to detect during problem formulation. Therefore, it can prove beneficial to create a set of dissimilar options that provide divergent perspectives to the problem. These alternatives should be near-optimal with respect to the specified objective(s), but be maximally different from each other in the decision region. The approach for creating maximally different sets of solutions is referred to as modelling-to-generate-alternatives (MGA). Simulationoptimization approaches are commonly employed to solve computationally difficult problems containing significant stochastic uncertainties. This paper provides a new, stochastic, multicriteria MGA approach that can generate sets of maximally different alternatives for any simulation-optimization method that employs a population-based algorithm.

Yeomans, J.S. (2019). "A Bicriterion Approach for Generating Alternatives Using Population-Based Algorithms", WSEAS Transactions on Systems, 18(4), 29-34.

Open Access Download

Abstract Complex problems are frequently inundated with incompatible performance requirements and inconsistent performance specifications that can be difficult – if not impossible – to identify at the time of problem formulation. Consequently, it is often advantageous to create a set of dissimilar options that provide distinct approaches to the problem. These disparate alternatives need to be close-to-optimal with respect to the specified objective(s), but remain maximally different from each other in the decision domain. The approach for creating such maximally different solution sets is referred to as modelling-to-generate-alternatives (MGA). This paper provides a new, bicriterion MGA approach that can generate sets of maximally different alternatives using any population-based algorithm.

Yeomans, J.S. (2018). "Computationally Testing the Efficacy of a Modelling-to-Generate-Alternatives Procedure for Simultaneously Creating Solutions", Journal of Computer Engineering, 20(1), 38-45.

Open Access Download

Abstract “Real world” applications tend to contain complex performance specifications riddled with contradictory performance elements. This state arises because policymaking naturally involves multifaceted problems that are riddled with competing performance objectives and contain incompatible design requirements which are very problematic – if not impossible – to capture at the time that the requisite decision models are constructed. There are invariably unmodelled components, not readily apparent during model formulation, which could greatly impact the suitability of the model’s solutions. Consequently, it proves preferable to generate a number of dissimilar alternatives that provide multiple, distinct perspectives to the problem. These different options should all possess close-to-optimal measures with respect to the specified objective(s), but be maximally different from each other in the decision space. These maximally different solution construction approaches have been referred to as modelling-to-generate-alternatives (MGA). This study provides a procedure that simultaneously generates multiple, maximally different alternatives by employing the metaheuristic, Firefly Algorithm. The efficacy of this efficient algorithmic optimization approach is demonstrated on a commonly-tested engineering benchmark problem.