Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.


Search Results

V. Dhingra and Debjit Roy (2015). "Modeling Emergency Evacuation with Time and Resource Constraints: A Case Study from Gujarat", Socio-Economic Planning Sciences, 51, 23-33.

View Paper

Abstract This study develops an off-site emergency response plan for a nuclear power plant in Gujarat, India subject to time constraints with resource limitations and risk of radiation exposure to victims. We formulate an optimization model to capture the effect of delay in evacuation, limited resource availability, and costs associated with resource allocation. A single chain closed queuing network model with class switching is used to model traffic congestion during evacuation. The throughput measures from the queuing network are used as inputs in the optimization model. Further, two resource allocation strategies are suggested and genetic algorithm is used for optimizing resource utilization and evacuation risk. The results indicate that pooling resources among a cluster of affected areas is most suitable for evacuation. Numerical experiments are conducted to analyze the time trade-offs and the effect of service time variability on the expected evacuation time. The proposed model can serve as an important resource planning and allocation tool for emergency evacuation.