Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.


Search Results

Kozlova, M., T. Nykänen and Yeomans, J.S. (2022). "Technical Advances in Aviation Electrification: Enhancing Strategic R&D Investment Analysis Through Simulation Decomposition", Sustainability, 14(1), 414.

Open Access Download

Abstract Computational decision-making in “real world” environmental and sustainability contexts frequently requires the need to contrast numerous uncertain factors and difficult-to-capture dimensions. Monte Carlo simulation modelling has frequently been employed to integrate the uncertain inputs and to construct probability distributions of the resulting outputs. Visual analytics and data visualization can be used to support the processing, analyzing, and communicating of the influence of multi-variable uncertainties on the decision-making process. In this paper, the novel Simulation Decomposition (SimDec) analytical technique is used to quantitatively examine carbon emission impacts resulting from a transformation of the aviation industry toward a state of greater airline electrification. SimDec is used to decompose a Monte Carlo model of the flying range of all-electric aircraft based upon improvements to batteries and motor efficiencies. Since SimDec can be run concurrently with any Monte Carlo model with only negligible additional overhead, it can easily be extended into the analysis of any environmental application that employs simulation. This generalizability in conjunction with its straightforward visualizations of complex stochastic uncertainties makes the practical contributions of SimDec very powerful in environmental decision-making.