
A Brief Review of Machine Learning for Text
From Basic Techniques to

Advanced Large Language Models

Jerome Niyirora, Ph.D.

March 14, 2024

1/61

Outline

1 Text-Based Machine Learning Basic Techniques
Text Preprocessing
Vectorization
Feature Engineering and Dimension Reduction in Text
Word Embeddings
BoW vs. CBoW
BoW vs. Matrix Factorization
Word2Vec vs. Recurrent neural networks (RNNs)

2 Leveraging the Power of Large Language Models
A Brief Introduction to LLMs
The Transformative Transformer Architecture
Interacting with Large Language Models
Query Examples with Openai API
Future Directions of LLMs

3 References

2/61

Text-Based Machine Learning Basic Techniques

3/61

Text-Based Machine Learning

Objective: Extracting useful insights from text

4/61

Text-Based Machine Learning

Common Applications

Search engines: Crawling, indexing, and ranking

Spam filters for emails

News aggregation and categorization

Recommender systems for content personalization

Opinion mining and sentiment analysis for market insights

5/61

Text Preprocessing

6/61

Text Preprocessing

Preprocessing: To clean and transform raw text into a
standardized format suitable for machine learning models.

Relation to Bias-Variance Tradeoff:
Reducing Variance: decreasing sensitivity to training data specifics
and mitigating overfitting.

Adjusting Bias: Impacting model assumptions and its ability to
capture complex patterns.

Challenge: Finding the optimal preprocessing level to balance the
bias-variance tradeoff effectively.

7/61

Text Preprocessing

Preprocessing: To clean and transform raw text into a
standardized format suitable for machine learning models.

Relation to Bias-Variance Tradeoff:
Reducing Variance: decreasing sensitivity to training data specifics
and mitigating overfitting.

Adjusting Bias: Impacting model assumptions and its ability to
capture complex patterns.

Challenge: Finding the optimal preprocessing level to balance the
bias-variance tradeoff effectively.

7/61

Text Preprocessing

Preprocessing: To clean and transform raw text into a
standardized format suitable for machine learning models.

Relation to Bias-Variance Tradeoff:
Reducing Variance: decreasing sensitivity to training data specifics
and mitigating overfitting.

Adjusting Bias: Impacting model assumptions and its ability to
capture complex patterns.

Challenge: Finding the optimal preprocessing level to balance the
bias-variance tradeoff effectively.

7/61

Text Preprocessing Steps

1 Tokenization: Splitting text into individual words or tokens.

Removes punctuation and splits on whitespace.

Example: “The quick brown fox” → [“The”, “quick”, “brown”,
“fox”]

2 Lowercasing: Converting all characters in the text to lowercase.

Aids in uniformity and reduces vocabulary size.

Example: “Quick” → ”quick”

3 Stop Words Removal: Eliminating common words that add little
value.

Words like “the”, “is”, “in” are often removed.

Example: [“the”, “quick”, “brown”, “fox”] → [“quick”, “brown”,
“fox”]

8/61

Text Preprocessing Steps

1 Tokenization: Splitting text into individual words or tokens.

Removes punctuation and splits on whitespace.

Example: “The quick brown fox” → [“The”, “quick”, “brown”,
“fox”]

2 Lowercasing: Converting all characters in the text to lowercase.

Aids in uniformity and reduces vocabulary size.

Example: “Quick” → ”quick”

3 Stop Words Removal: Eliminating common words that add little
value.

Words like “the”, “is”, “in” are often removed.

Example: [“the”, “quick”, “brown”, “fox”] → [“quick”, “brown”,
“fox”]

8/61

Text Preprocessing Steps

1 Tokenization: Splitting text into individual words or tokens.

Removes punctuation and splits on whitespace.

Example: “The quick brown fox” → [“The”, “quick”, “brown”,
“fox”]

2 Lowercasing: Converting all characters in the text to lowercase.

Aids in uniformity and reduces vocabulary size.

Example: “Quick” → ”quick”

3 Stop Words Removal: Eliminating common words that add little
value.

Words like “the”, “is”, “in” are often removed.

Example: [“the”, “quick”, “brown”, “fox”] → [“quick”, “brown”,
“fox”]

8/61

Text Preprocessing Steps

4 Stemming: Reducing words to their root form.

Strips suffixes; ”running” becomes ”run”.

Example: ”jumps” → ”jump”

5 Lemmatization: Reducing words to their base or dictionary form.

More sophisticated than stemming; uses vocabulary analysis.

Incorporates Part-of-Speech (POS) tagging

As a verb: ”He is running.” (running → run)

As a noun (gerund): ”Running is fun.” (running → running)

6 Removing Special Characters and Numbers: Cleansing text of
non-linguistic elements.

Example: ”Password123!” → ”Password”

7 Vectorization: Converting text to numerical format for machine
learning.

Techniques include Bag of Words, TF-IDF, Word Embeddings.

9/61

Text Preprocessing Steps

4 Stemming: Reducing words to their root form.

Strips suffixes; ”running” becomes ”run”.

Example: ”jumps” → ”jump”

5 Lemmatization: Reducing words to their base or dictionary form.

More sophisticated than stemming; uses vocabulary analysis.

Incorporates Part-of-Speech (POS) tagging

As a verb: ”He is running.” (running → run)

As a noun (gerund): ”Running is fun.” (running → running)

6 Removing Special Characters and Numbers: Cleansing text of
non-linguistic elements.

Example: ”Password123!” → ”Password”

7 Vectorization: Converting text to numerical format for machine
learning.

Techniques include Bag of Words, TF-IDF, Word Embeddings.

9/61

Text Preprocessing Steps

4 Stemming: Reducing words to their root form.

Strips suffixes; ”running” becomes ”run”.

Example: ”jumps” → ”jump”

5 Lemmatization: Reducing words to their base or dictionary form.

More sophisticated than stemming; uses vocabulary analysis.

Incorporates Part-of-Speech (POS) tagging

As a verb: ”He is running.” (running → run)

As a noun (gerund): ”Running is fun.” (running → running)

6 Removing Special Characters and Numbers: Cleansing text of
non-linguistic elements.

Example: ”Password123!” → ”Password”

7 Vectorization: Converting text to numerical format for machine
learning.

Techniques include Bag of Words, TF-IDF, Word Embeddings.

9/61

Text Preprocessing Steps

4 Stemming: Reducing words to their root form.

Strips suffixes; ”running” becomes ”run”.

Example: ”jumps” → ”jump”

5 Lemmatization: Reducing words to their base or dictionary form.

More sophisticated than stemming; uses vocabulary analysis.

Incorporates Part-of-Speech (POS) tagging

As a verb: ”He is running.” (running → run)

As a noun (gerund): ”Running is fun.” (running → running)

6 Removing Special Characters and Numbers: Cleansing text of
non-linguistic elements.

Example: ”Password123!” → ”Password”

7 Vectorization: Converting text to numerical format for machine
learning.

Techniques include Bag of Words, TF-IDF, Word Embeddings.

9/61

Text Preprocessing Steps

Python Code (Preprocessing)
1 from nltk.stem import WordNetLemmatizer

2 from nltk.corpus import stopwords , wordnet

3 from nltk.tokenize import word_tokenize

4 from nltk import pos_tag

5 ENGLISH_STOP_WORDS = set(stopwords.words(’english ’))

6 #

7 class LemmaTokenizer(object):

8 def __init__(self , additional_stopwords=set()):

9 self.wnl = WordNetLemmatizer ()

10 self.stopWords = ENGLISH_STOP_WORDS.union(additional_stopwords)

11 def get_wordnet_pos(self , word_tag):

12 """Map POS tag to first character lemmatize () accepts """

13 tag = word_tag [1][0]. upper()

14 tag_dict = {"J": wordnet.ADJ ,

15 "N": wordnet.NOUN ,

16 "V": wordnet.VERB ,

17 "R": wordnet.ADV}

18 return tag_dict.get(tag , wordnet.NOUN)

19 def __call__(self , doc):

20 # Tokenize and lower case

21 tokens = word_tokenize(doc.lower())

22 # POS tagging before lemmatization

23 tagged_tokens = pos_tag(tokens)

24 # Lemmatize with POS tagging , filter out stop words and non -alphabetic words

25 return [self.wnl.lemmatize(token , self.get_wordnet_pos(tagged_token))

26 for token , tagged_token in zip(tokens , tagged_tokens)

27 if token.isalpha () and token not in self.stopWords]

28 # Example usage

29 tokenizer = LemmaTokenizer ()

30 doc = "The foxes are quickly jumping over the lazy dogs."

31 print(tokenizer(doc))

10/61

Vectorization

11/61

Vectorization: Bag of Words (BoW)

Description:

Represents text documents as vectors of word counts.

Ignores word order, context, and grammar.

Mathematical Representation: A document D is represented as a
vector V = (v1, v2, ..., vn) where each vi corresponds to the count of
word wi in the document, and n is the vocabulary size.

Example

Word Document 1 Document 2 Document 3
apple 2 0 1
banana 0 1 1
orange 1 0 0

12/61

Vectorization: Bag of Words (BoW)

Description:

Represents text documents as vectors of word counts.

Ignores word order, context, and grammar.

Mathematical Representation: A document D is represented as a
vector V = (v1, v2, ..., vn) where each vi corresponds to the count of
word wi in the document, and n is the vocabulary size.

Example

Word Document 1 Document 2 Document 3
apple 2 0 1
banana 0 1 1
orange 1 0 0

12/61

Vectorization: Bag of Words (BoW)

Description:

Represents text documents as vectors of word counts.

Ignores word order, context, and grammar.

Mathematical Representation: A document D is represented as a
vector V = (v1, v2, ..., vn) where each vi corresponds to the count of
word wi in the document, and n is the vocabulary size.

Example

Word Document 1 Document 2 Document 3
apple 2 0 1
banana 0 1 1
orange 1 0 0

12/61

Vectorization: Term Frequency-Inverse Document
Frequency (TF-IDF)

Description:

Balances term frequency against the word’s commonness across
documents.

Mathematical Formulas:

TF(w ,D) = (Number of times word w appears in document D) /
(Total number of words in D)

IDF(w ,D) = log(Total number of documents
Number of documents containing w)

TF-IDF(w ,D) = TF(w ,D) × IDF(w ,D)

Example

Word Document 1 Document 2 Document 3
apple 0.27 0.00 0.20
banana 0.00 0.41 0.20
orange 0.37 0.00 0.00

13/61

Vectorization: Term Frequency-Inverse Document
Frequency (TF-IDF)

Description:

Balances term frequency against the word’s commonness across
documents.

Mathematical Formulas:

TF(w ,D) = (Number of times word w appears in document D) /
(Total number of words in D)

IDF(w ,D) = log(Total number of documents
Number of documents containing w)

TF-IDF(w ,D) = TF(w ,D) × IDF(w ,D)

Example

Word Document 1 Document 2 Document 3
apple 0.27 0.00 0.20
banana 0.00 0.41 0.20
orange 0.37 0.00 0.00

13/61

Vectorization: Term Frequency-Inverse Document
Frequency (TF-IDF)

Description:

Balances term frequency against the word’s commonness across
documents.

Mathematical Formulas:

TF(w ,D) = (Number of times word w appears in document D) /
(Total number of words in D)

IDF(w ,D) = log(Total number of documents
Number of documents containing w)

TF-IDF(w ,D) = TF(w ,D) × IDF(w ,D)

Example

Word Document 1 Document 2 Document 3
apple 0.27 0.00 0.20
banana 0.00 0.41 0.20
orange 0.37 0.00 0.00

13/61

Vectorization: Term Frequency-Inverse Document
Frequency (TF-IDF)

Implementation in Sklearn:

tfidfTransformer = TfidfTransformer(smooth idf=False,
norm=None)

TF(w ,D) = Number of times word w appears in document D

IDF(w ,D) = log(Total number of documents
Number of documents containing w)

TF-IDF(w ,D) = TF(w ,D) × IDF(w ,D) + TF(w ,D)

Example

Word Document 1 Document 2 Document 3
apple 2.81 0.00 1.41
banana 0.00 1.41 1.41
orange 2.10 0.00 0.00

14/61

Vectorization: Term Frequency-Inverse Document
Frequency (TF-IDF)

Implementation in Sklearn:

tfidfTransformer = TfidfTransformer(smooth idf=False,
norm=None)

TF(w ,D) = Number of times word w appears in document D

IDF(w ,D) = log(Total number of documents
Number of documents containing w)

TF-IDF(w ,D) = TF(w ,D) × IDF(w ,D) + TF(w ,D)

Example

Word Document 1 Document 2 Document 3
apple 2.81 0.00 1.41
banana 0.00 1.41 1.41
orange 2.10 0.00 0.00

14/61

Vectorization: Term Frequency-Inverse Document
Frequency (TF-IDF)

Python Code (TF-IDF)
1 from sklearn.feature_extraction.text import CountVectorizer , TfidfTransformer

2 import pandas as pd

3

4 text = [’apple apple orange ’,

5 ’banana ’,

6 ’apple banana ’]

7

8 count_vect = CountVectorizer ()

9 tfidf_transformer = TfidfTransformer(smooth_idf=False , norm=None)

10

11 # Generate term frequency (TF) matrix

12 counts = count_vect.fit_transform(text)

13

14 # Generate TF-IDF matrix

15 tfidf = tfidf_transformer.fit_transform(counts)

16

17 # Create a pandas DataFrame for the TF-IDF matrix

18 # The rows correspond to the documents , and the columns correspond to the terms.

19 feature_names = count_vect.get_feature_names_out ()

20 tfidf_df = pd.DataFrame(tfidf.toarray (), columns=feature_names , index =[’Document 0

’, ’Document 1’, ’Document 2’])

21

22 print(tfidf_df)

15/61

Similarity Computation in Text

Euclidean distance is not ideal for computing distances in
multidimensional sparse spaces due to the varying number of zeros
(due to different sizes of documents).

Distance(X ,Y) =

√√√√ d∑
i=1

(xi − yi)2

The smaller the distance, the more similar the documents are.

Example

Consider the documents: [’She sat down.’, ’She drank coffee.’, ’She
spent much time learning text mining.’, ’She invested significant efforts
in learning text mining.’] The Euclidean distance, in boolean form,
between doc 1 and doc 2 is

√
2, while the distance between doc 3 and

doc 4 is
√
6. This does not make intuitive sense since docs 3 and 4 are

more related than docs 1 and 2.

Solution: Cosine similarity

cosine(X ,Y) =

∑d
i=1 xiyi√∑d

i=1 x
2
i

√∑d
i=1 y

2
i

Measures the angle between the multidimensional vectors.

Does not depend on the size of the documents.

Ranges between 0 and 1 for BoW problems. The higher the measure
the more similar the documents.

16/61

Similarity Computation in Text

Euclidean distance is not ideal for computing distances in
multidimensional sparse spaces due to the varying number of zeros
(due to different sizes of documents).

Distance(X ,Y) =

√√√√ d∑
i=1

(xi − yi)2

The smaller the distance, the more similar the documents are.

Example

Consider the documents: [’She sat down.’, ’She drank coffee.’, ’She
spent much time learning text mining.’, ’She invested significant efforts
in learning text mining.’] The Euclidean distance, in boolean form,
between doc 1 and doc 2 is

√
2, while the distance between doc 3 and

doc 4 is
√
6. This does not make intuitive sense since docs 3 and 4 are

more related than docs 1 and 2.

Solution: Cosine similarity

cosine(X ,Y) =

∑d
i=1 xiyi√∑d

i=1 x
2
i

√∑d
i=1 y

2
i

Measures the angle between the multidimensional vectors.

Does not depend on the size of the documents.

Ranges between 0 and 1 for BoW problems. The higher the measure
the more similar the documents.

16/61

Similarity Computation in Text

Example

Consider the documents: [’She sat down.’, ’She drank coffee.’, ’She
spent much time learning text mining.’, ’She invested significant efforts
in learning text mining.’] The Euclidean distance, in boolean form,
between doc 1 and doc 2 is

√
2, while the distance between doc 3 and

doc 4 is
√
6. This does not make intuitive sense since docs 3 and 4 are

more related than docs 1 and 2.

Solution: Cosine similarity

cosine(X ,Y) =

∑d
i=1 xiyi√∑d

i=1 x
2
i

√∑d
i=1 y

2
i

Measures the angle between the multidimensional vectors.

Does not depend on the size of the documents.

Ranges between 0 and 1 for BoW problems. The higher the measure
the more similar the documents.

16/61

Feature Engineering and Dimension Reduction in Text

17/61

Feature Engineering and Dimension Reduction I

Feature Engineering

Definition: The process of creating features from raw text to improve
model performance.
Examples:

Bag of Words (BoW): Counts the occurrence of each word within a
document, ignoring order.

TF-IDF (Term Frequency-Inverse Document Frequency): Weighs
the words’ counts by how unique they are across documents,
highlighting important words.

18/61

Feature Engineering and Dimension Reduction II

Dimension Reduction

Definition: Techniques used to reduce the number of features in NLP to
improve computational efficiency and model performance.
Examples:

Principal Component Analysis (PCA): A mathematical technique to
reduce dataset dimensions while preserving as much variance as
possible.

Latent Semantic Analysis (LSA): Uses singular value decomposition
(SVD) on the term-document matrix to identify patterns and reduce
dimensions, often applied after TF-IDF.

19/61

Feature Engineering and Dimension Reduction III

Application Example

Preprocessing Pipeline:

1 Start with raw text data from documents.

2 Apply TF-IDF to highlight important words while reducing common
words’ impact.

3 Use LSA to reduce feature space, focusing on latent topics.

4 The reduced feature set is now ready for machine learning model
training (e.g., classification or regression tasks).

Note: Dimension reduction mitigates the issue of sparsity in data, which
is beneficial as sparsity can adversely affect certain classifiers, such as
decision trees.

20/61

Feature Engineering and Dimension Reduction III

Application Example

Preprocessing Pipeline:

1 Start with raw text data from documents.

2 Apply TF-IDF to highlight important words while reducing common
words’ impact.

3 Use LSA to reduce feature space, focusing on latent topics.

4 The reduced feature set is now ready for machine learning model
training (e.g., classification or regression tasks).

Note: Dimension reduction mitigates the issue of sparsity in data, which
is beneficial as sparsity can adversely affect certain classifiers, such as
decision trees.

20/61

Word Embeddings

21/61

Word Embeddings

Description:

Represents words as dense vectors capturing semantic meanings.

Vectors are learned from text by predicting a word given its context
(or vice versa).

Characteristics: Words with similar meanings have similar vectors. Not
explicitly mathematical, but based on optimization during training (e.g.,
via neural networks).

Example

Word Vector
apple (0.23, -1.0, 0.32, ...)
banana (0.21, -0.97, 0.31, ...)
orange (0.20, -0.99, 0.33, ...)

Table 1: Simplified Word Embedding Vectors

22/61

Word Embeddings

Description:

Represents words as dense vectors capturing semantic meanings.

Vectors are learned from text by predicting a word given its context
(or vice versa).

Characteristics: Words with similar meanings have similar vectors. Not
explicitly mathematical, but based on optimization during training (e.g.,
via neural networks).

Example

Word Vector
apple (0.23, -1.0, 0.32, ...)
banana (0.21, -0.97, 0.31, ...)
orange (0.20, -0.99, 0.33, ...)

Table 1: Simplified Word Embedding Vectors

22/61

Word Embeddings

Description:

Represents words as dense vectors capturing semantic meanings.

Vectors are learned from text by predicting a word given its context
(or vice versa).

Characteristics: Words with similar meanings have similar vectors. Not
explicitly mathematical, but based on optimization during training (e.g.,
via neural networks).

Example

Word Vector
apple (0.23, -1.0, 0.32, ...)
banana (0.21, -0.97, 0.31, ...)
orange (0.20, -0.99, 0.33, ...)

Table 1: Simplified Word Embedding Vectors

22/61

Word Embeddings Training Using Word2Vec

Foundation:

Word2Vec utilizes a shallow neural network architecture to learn
word embeddings.

Two main models: Continuous Bag of Words (CBOW) and
Skip-Gram.

CBOW predicts a target word from a window of surrounding
context words.

Skip-Gram does the opposite, predicting context words from a
target word.

The objective function maximizes the probability of observing a word
given its context (or vice versa) using softmax or negative sampling.

23/61

Word Embeddings Training Using Word2Vec

Foundation:

Word2Vec utilizes a shallow neural network architecture to learn
word embeddings.

Two main models: Continuous Bag of Words (CBOW) and
Skip-Gram.

CBOW predicts a target word from a window of surrounding
context words.

Skip-Gram does the opposite, predicting context words from a
target word.

The objective function maximizes the probability of observing a word
given its context (or vice versa) using softmax or negative sampling.

23/61

Word Embeddings Training Using Word2Vec

Foundation:

Word2Vec utilizes a shallow neural network architecture to learn
word embeddings.

Two main models: Continuous Bag of Words (CBOW) and
Skip-Gram.

CBOW predicts a target word from a window of surrounding
context words.

Skip-Gram does the opposite, predicting context words from a
target word.

The objective function maximizes the probability of observing a word
given its context (or vice versa) using softmax or negative sampling.

23/61

Word Embeddings Training Using Word2Vec

(1) 100000

a

(2) 010000

cat

(3) 000000

dog

(4) 000100

mouse

(5) 000000

catches

(6) 000001

eats

W1nxk W2kxn (5) 000010

Hidden layer Output layer

Figure 1: Adapted from https://www.researchgate.net/figure/

word2vec-CBOW-model_fig1_313247648

24/61

https://www.researchgate.net/figure/word2vec-CBOW-model_fig1_313247648
https://www.researchgate.net/figure/word2vec-CBOW-model_fig1_313247648

Vectorization: Word Embeddings Using Word2Vec

Python Code (Word2Vec)

1 from gensim.models import Word2Vec

2 import nltk

3

4 nltk.download(’punkt’)

5

6 text = [’apple apple orange ’,’banana ’,’apple banana ’]

7

8 # Tokenize the documents (split them into words)

9 tokenized_text = [nltk.word_tokenize(doc) for doc in text]

10

11 # Train a Word2Vec model on the tokenized documents

12 word2vec_model = Word2Vec(sentences=tokenized_text , vector_size =100,

window=5, min_count=1, workers =4)

13

14 # For example , to get the embedding for the word ’apple ’:

15 apple_embedding = word2vec_model.wv[’apple ’]

16

17 # Here’s how you could embed a documente:

18 document_embedding = sum(word2vec_model.wv[word] for word in

tokenized_text [0]) / len(tokenized_text [0])

19

20 print(apple_embedding) # This will print the embedding for ’apple ’

25/61

Word Embeddings Using Pre-trained Embedding Models I

Models

Pre-trained embedding models based on neural network models

Trained on large text corpora to map words to high-dimensional
vectors.

Examples include Word2Vec, GloVe, and FastText.

26/61

Word Embeddings Using Pre-trained Embedding Models II

Advantages

Rich Semantic Representations: Capture deep linguistic patterns
and relationships.

Ready to Use: Eliminate the need for extensive computational
resources for training.

Versatility: Can be utilized across various NLP tasks and
applications.

Improved Performance: Often enhance model performance,
especially on smaller datasets.

27/61

Word Embeddings Using Pre-trained Embedding Models III

Disadvantages

Fixed Vocabulary: Struggle with out-of-vocabulary (OOV) words
not present in the training corpus.

Generic Context: May not capture domain-specific nuances if
trained on general corpora.

Storage and Speed: Large models require significant memory and
can slow down applications.

Lack of Customizability: Difficult to adjust the embeddings to
specific needs or biases in the data.

Note: Choosing the right pre-trained model depends on the specific
requirements and constraints of the NLP task at hand.

28/61

Word Embeddings Using Pre-trained Embedding Models IV

Example

Retrieving an Embedding Vector for ”Apple”

Word Index Lookup: Models map words to unique indices.
”Apple” is looked up in the model’s dictionary to find its index.

Embedding Matrix: Embeddings are stored in a matrix where rows
correspond to words and their indices.

Retrieving the Vector: The index from the lookup step is used to
retrieve ”apple”’s embedding vector from the matrix.

Result: The retrieved vector is a dense representation capturing
semantic and syntactic properties of ”apple”.

Out-of-Vocabulary (OOV) Words: If ”apple” is not in the
model’s vocabulary, handling varies (e.g., error or generating a
vector from subwords in models like FastText).

29/61

Word Embeddings Using Pre-trained Embedding Models V

Python Code (Pre-trained Embedding Models)

1 from gensim.models.keyedvectors import KeyedVectors

2

3 # Specify the path to where you’ve saved the

extracted GloVe file

4 glove_file = ’glove .6B.50d.txt’

5

6 # Load the model (this might take a while)

7 model = KeyedVectors.load_word2vec_format(glove_file ,

binary=False , no_header=True)

8

9 # Get the vector for ’apple ’

10 apple_vector = model[’apple’]

11 print(apple_vector [:10])

30/61

BoW vs. CBoW

31/61

BoW vs. CBoW

Word Frequency vs. Context:
BoW models focus on the frequency of words within documents

CBoW learns word representations by considering the context

Simplicity vs. Semantic Depth:
BoW’s simplicity makes it suitable for a range of traditional NLP tasks

CBoW offers foundational support for advanced models (e.g.,named
entity recognition and machine translation).

Applications:
BoW is often utilized in applications where the presence of specific
words is more critical than their order or context.

CBoW is used when the understanding of word usage and meaning
within context is important.

32/61

BoW vs. CBoW

Word Frequency vs. Context:
BoW models focus on the frequency of words within documents

CBoW learns word representations by considering the context

Simplicity vs. Semantic Depth:
BoW’s simplicity makes it suitable for a range of traditional NLP tasks

CBoW offers foundational support for advanced models (e.g.,named
entity recognition and machine translation).

Applications:
BoW is often utilized in applications where the presence of specific
words is more critical than their order or context.

CBoW is used when the understanding of word usage and meaning
within context is important.

32/61

BoW vs. CBoW

Word Frequency vs. Context:
BoW models focus on the frequency of words within documents

CBoW learns word representations by considering the context

Simplicity vs. Semantic Depth:
BoW’s simplicity makes it suitable for a range of traditional NLP tasks

CBoW offers foundational support for advanced models (e.g.,named
entity recognition and machine translation).

Applications:
BoW is often utilized in applications where the presence of specific
words is more critical than their order or context.

CBoW is used when the understanding of word usage and meaning
within context is important.

32/61

BoW vs. Matrix Factorization

33/61

CBoW vs. Matrix Factorization

CBoW

Use

When context of use is crucial for understanding word meaning.

For capturing semantic similarities based on surrounding words.

Efficient for large datasets with rich contextual information.

Matrix Factorization

Use

When handling very sparse data or aiming for dimensionality
reduction.

For probabilistic interpretations of word co-occurrences.

Useful in tasks requiring detailed probabilistic models of text.

34/61

CBoW vs. Matrix Factorization

CBoW

Use

When context of use is crucial for understanding word meaning.

For capturing semantic similarities based on surrounding words.

Efficient for large datasets with rich contextual information.

Matrix Factorization

Use

When handling very sparse data or aiming for dimensionality
reduction.

For probabilistic interpretations of word co-occurrences.

Useful in tasks requiring detailed probabilistic models of text.

34/61

Word2Vec vs. Recurrent neural networks (RNNs)

35/61

Word2Vec vs. RNNs

Key Distinctions

Use Word2Vec for generating word embeddings where local context
suffices.

Use RNNs when sequential order and longer contexts (e.g., a
sentence) significantly impact meaning.

Transformers are now often preferred for complex sequence modeling
due to parallelization and handling long-range dependencies.

36/61

Leveraging the Power of Large Language Models

37/61

A Brief Introduction to LLMs

38/61

Understanding Large Language Models (LLMs) I

What are LLMs?

LLMs are advanced neural network architectures trained on vast
amounts of text data to understand, generate, and interpret human
language.

39/61

Understanding Large Language Models (LLMs) II

How are LLMs Generated?

Data Collection: Gather large, diverse text corpora from books,
websites, articles, and other sources.

Pre-training: Train the model on this text data using unsupervised
learning techniques to learn the statistical properties of the
language.

For GPT: Focus on predicting the next word in a sequence.

For BERT: Learn by predicting masked words in a sentence,
understanding context in both directions.

40/61

Understanding Large Language Models (LLMs) III

Key Characteristics

Scale: Encompass billions or even trillions of parameters, enabling
them to capture a wide array of linguistic subtleties.

Versatility: Can perform a variety of language tasks, such as
translation, summarization, question answering, and creative writing,
without task-specific training.

Contextual Understanding: Excel at grasping context and
generating responses that are relevant and coherent over extended
passages of text.

41/61

Understanding Large Language Models (LLMs) IV

Example

GPT Series (OpenAI): The GPT series, including GPT-3.5 and
GPT-4, are used in applications like ChatGPT and Microsoft Copilot.

PaLM and Gemini (Google): These models are used in Google’s
applications.

LLaMA (Meta): This is a family of open-source models developed
by Meta.

Claude (Anthropic): These models are used in applications like
Slack, Notion, and Zoom.

42/61

The Transformative Transformer Architecture

43/61

Transformer Architecture in Large Language Models I

Attention is All You Need

The Transformer architecture, introduced in the paper ”Attention is
All You Need” by Vaswani et al. (2017), revolutionized NLP by enabling
models to process words in parallel and capture contextual
information from sequences efficiently.

44/61

Transformer Architecture in Large Language Models II

Figure 2: Source and Implementation Example:
https://nlp.seas.harvard.edu/2018/04/03/attention.html

45/61

https://nlp.seas.harvard.edu/2018/04/03/attention.html

Transformer Architecture in Large Language Models III

Key Components

Self-Attention Mechanism: Allows each word to dynamically focus
on other parts of the sentence, capturing intricate dependencies.

Positional Encoding: Injects information about the position of each
word in the sequence, compensating for the absence of recurrence.

Stacked Encoders and Decoders: Multiple layers (stacks) of
encoders for input processing and decoders for output generation,
enabling deep understanding.

Feed-Forward Neural Networks: Each layer contains feed-forward
networks for transforming attention-combined inputs into outputs.

46/61

Interacting with Large Language Models

47/61

Interacting with Large Language Models I

Source: Document Link: SUNY Albany

Choosing the Right LLM

Avoid using OpenAI’s original ChatGPT due to its limitations.

Bing Chat/Copilot: Free, internet-connected, suitable for general
inquiries.

OpenAI GPT-4: Offers deeper insights for a subscription fee,
excelling in specific tasks.

Claude.ai: Ideal for processing and summarizing larger documents.

48/61

https://docs.google.com/document/d/1Lo4aeiWT4f5xhcsAbWAfQRITghBhcmFN2m-JEX5OkJA/edit

Interacting with Large Language Models II

Effective Prompting Strategies

Experiment with Bing Chat/Copilot’s “creative” and “precise”
settings to suit your query needs.

Request more examples than needed (e.g., “give me 10 examples”)
and select the most relevant ones.

Engage in a conversational manner with the LLM. If initial responses
don’t meet expectations, prompt adjustments.

49/61

Interacting with Large Language Models III

Best Practices

LLMs serve as a source of ideas and support. However, critical
engagement and verification of the information provided are essential:

Always review and verify the LLM’s output.

Use the model’s feedback constructively but remain cautious about
its limitations.

50/61

Query Examples with Openai API

51/61

Comparing Tesla’s Financial Reports

Query Structure

Clearly specify the aspect of the financial reports you’re interested
in, such as revenue growth, expense changes, profitability, or
investment activities.

Include any relevant context, such as market conditions, product
launches, or significant corporate events, that might impact
year-over-year comparisons.

Ask for a concise summary of key financial indicators and their
variance over the two periods.

Encourage the identification of trends or patterns in the financial
data across the two reports.

Example

1 User: ”Can you compare the key financial differences in Tesla’s final
reports between December 2023 and December 2022, focusing on
revenue growth and R&D investments?”

52/61

Comparing Tesla’s Financial Reports

Query Structure

Include any relevant context, such as market conditions, product
launches, or significant corporate events, that might impact
year-over-year comparisons.

Ask for a concise summary of key financial indicators and their
variance over the two periods.

Encourage the identification of trends or patterns in the financial
data across the two reports.

Example

1 User: ”Can you compare the key financial differences in Tesla’s final
reports between December 2023 and December 2022, focusing on
revenue growth and R&D investments?”

52/61

Comparing Tesla’s Financial Reports

Query Structure

Include any relevant context, such as market conditions, product
launches, or significant corporate events, that might impact
year-over-year comparisons.

Ask for a concise summary of key financial indicators and their
variance over the two periods.

Encourage the identification of trends or patterns in the financial
data across the two reports.

Example

1 User: ”Can you compare the key financial differences in Tesla’s final
reports between December 2023 and December 2022, focusing on
revenue growth and R&D investments?”

52/61

Comparing Tesla’s Financial Reports

Query Structure

Include any relevant context, such as market conditions, product
launches, or significant corporate events, that might impact
year-over-year comparisons.

Ask for a concise summary of key financial indicators and their
variance over the two periods.

Encourage the identification of trends or patterns in the financial
data across the two reports.

Example

1 User: ”Can you compare the key financial differences in Tesla’s final
reports between December 2023 and December 2022, focusing on
revenue growth and R&D investments?”

52/61

Comparing Tesla’s Financial Reports III

Python Code (Compare Texts)

1 import openai

2 openai.api_key = ’sk -...y’

3 #

4 report1 = data.iloc [0][’1A_Text ’]

5 report2 = data.iloc [1][’1A_Text ’]

6 period1 = data.iloc [0][’Reporting Period ’]. strftime(’%B-%Y’)

7 period2 = data.iloc [1][’Reporting Period ’]. strftime(’%B-%Y’)

8

9 # query

10 query = f"Can you compare the key financial differences in Tesla \

11 financial report from {period1}, as given in {report1}, and the financial

report from {period2}, as given in {report2},focusing on various risks

and \operational challenges that could impact Tesla’s finacial condition?

"

12

13 response = openai.chat.completions.create(

14 messages =[

15 {’role’: ’system ’, ’content ’: ’You are asked to compare two financial

reports from TESLA and \

16 identify key differences.’},

17 {’role’: ’user’, ’content ’: query},

18],

19 model=’gpt -4-0125- preview ’,

20 temperature =0, # Keep response consistent

21)

22

23 print(response.choices [0]. message.content)

53/61

Text Summarization with GPT Models

Python Code (Text Summarization)

1 import openai

2 openai.api_key = ’sk -...y’

3 text1 = data.iloc [0][’1A_Text ’]

4 # query

5 query = f’ In one paragraph , summarize {text1} and speculate on

the financial outlook of this company as Positive , Negative , or

Unsure ’

6

7 response = openai.chat.completions.create(

8 messages =[

9 {’role’: ’system ’, ’content ’: ’You are asked to summarize

financial reporting from TESLA and speculate on the financial

outlook.’},

10 {’role’: ’user’, ’content ’: query},

11],

12 model=’gpt -4-0125- preview ’,

13 temperature =0,

14)

15

16 print(response.choices [0]. message.content)

54/61

Sentiment Analysis with GPT Models

Python Code (Sentiment Analysis)

1 def sentiment_analysis(text):

2 # Create a prompt for the model

3 prompt = f""" """

4

5 # Call the OpenAI API to generate a response

6 response = openai.chat.completions.create (....

7)

8 # Extract the sentiment from the response

9 sentiment = response.choices [0]. message.content.strip ().lower

()

10 return sentiment

11 texts = [

12 "Battery life is too short for my liking.",

13 "Broke after a week",

14 "Not worth the price.",

15 "The material feels cheap and unpleasant.",

16 "Arrived on time , works perfectly"

17]

18

19 # Perform sentiment analysis on each text

20 results = [(text , sentiment_analysis(text)) for text in texts]

55/61

Future Directions of LLMs

56/61

Future Directions for Large Language Models I

Technology

Combining LLMs with other AI technologies: Integrating
reinforcement learning for better decision-making and multimodal
capabilities for processing various data types.

Efficiency: Developing more efficient models to reduce
computational demands.

Domain Adaptation: Tailoring LLMs for specialized domains or
tasks more effectively.

Interpretability and Personalization: Enhancing models’
explainability and ability to offer personalized experiences.

57/61

Future Directions for Large Language Models II

Society

Model Transparency and Ethical Considerations: Focusing on
interpretability, bias mitigation, fairness, and privacy.

Regulation and Policy: Developing frameworks to govern the use
and impacts of LLMs.

Human-AI Collaboration: Facilitating synergistic collaborations
between humans and LLMs.

Addressing the Digital Divide and Global Perspectives:
Ensuring equitable access and considering diverse cultural and
linguistic needs.

Education and Workforce Development: Adapting education
systems and workforce training to align with evolving AI
technologies.

58/61

References

59/61

References

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow. ” O’Reilly Media, Inc.”.

Shmueli, G., Bruce, P. C., Yahav, I., Patel, N. R., & Lichtendahl Jr, K. C. (2020).
Data mining for business analytics: concepts, techniques, and applications in
Python. John Wiley & Sons.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Aggarwal, C. C., & Aggarwal, C. C. (2018). Machine learning for text: An
introduction. Springer International Publishing.

https://docs.google.com/document/d/

1Lo4aeiWT4f5xhcsAbWAfQRITghBhcmFN2m-JEX5OkJA/edit

https:

//www.researchgate.net/figure/word2vec-CBOW-model_fig1_313247648

https://nlp.seas.harvard.edu/2018/04/03/attention.html

GPT-4 for Beamer frame code and proofreading

60/61

https://docs.google.com/document/d/1Lo4aeiWT4f5xhcsAbWAfQRITghBhcmFN2m-JEX5OkJA/edit
https://docs.google.com/document/d/1Lo4aeiWT4f5xhcsAbWAfQRITghBhcmFN2m-JEX5OkJA/edit
https://www.researchgate.net/figure/word2vec-CBOW-model_fig1_313247648
https://www.researchgate.net/figure/word2vec-CBOW-model_fig1_313247648
https://nlp.seas.harvard.edu/2018/04/03/attention.html

?

61/61

	Text-Based Machine Learning Basic Techniques
	Text Preprocessing
	Vectorization
	Feature Engineering and Dimension Reduction in Text
	Word Embeddings
	BoW vs. CBoW
	BoW vs. Matrix Factorization
	Word2Vec vs. Recurrent neural networks (RNNs)

	Leveraging the Power of Large Language Models
	A Brief Introduction to LLMs
	The Transformative Transformer Architecture
	Interacting with Large Language Models
	Query Examples with Openai API
	Future Directions of LLMs

	References

