Publications Database

Welcome to the new Schulich Peer-Reviewed Publication Database!

The database is currently in beta-testing and will be updated with more features as time goes on. In the meantime, stakeholders are free to explore our faculty’s numerous works. The left-hand panel affords the ability to search by the following:

  • Faculty Member’s Name;
  • Area of Expertise;
  • Whether the Publication is Open-Access (free for public download);
  • Journal Name; and
  • Date Range.

At present, the database covers publications from 2012 to 2020, but will extend further back in the future. In addition to listing publications, the database includes two types of impact metrics: Altmetrics and Plum. The database will be updated annually with most recent publications from our faculty.

If you have any questions or input, please don’t hesitate to get in touch.


Search Results

Diamant, A., Milner, J. and Quereshy, F. (2018). "Dynamic Patient Scheduling for Multi-Appointment Health Care Programs", Production and Operations Management, 27(1), 58-79.

View Paper

Abstract We investigate the scheduling practices of a multidisciplinary, multistage, outpatient health care program. Patients undergo a series of assessments before being eligible for elective surgery. Such systems often suffer from high rates of attrition and appointment no‐shows leading to capacity underutilization and treatment delays. We propose a new scheduling model where the clinic assigns patients to an appointment day but postpones the decision of which assessments patients undergo pending the observation of who arrives. In doing so, the clinic gains flexibility to improve system performance. We formulate the scheduling problem as a Markov decision process and use approximate dynamic programming to solve it. We apply our approach to a dataset collected from a bariatric surgery program at a large tertiary hospital in Toronto, Canada. We examine the quality of our solutions via structural results and compare them with heuristic scheduling practices using a discrete‐event simulation. By allowing multiple assessments, delaying their scheduling, and by optimizing over an appointment book, we show significant improvements in patient throughput, clinic profit, use of overtime, and staff utilization.